www.chms.ru - вывоз мусора в Люберцах


Почему витражи поражают или древнее искусство в интерьере


Панно в интерьере - модно, роскошно и практично


Наливные полы с 3D-эффектом - современное чудо дизайна


Что такое морской стиль и как его применить для оформления дома?


Почему эклектика в интерьере так популярна?

Перейти на главную  Журналы 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

тангенциальный модуль

мтль

ipMauLtu


разгрузка

личение времени нагружения с 5 сек до 2 мин может изменить деформацию на 15%, но в пределах интервала от 2 до 10 мин (и даже до 20), т. е. за время, обычно применяемое при испытаниях образцов на стандартном испытательном оборудовании, увеличение деформаций ничтожно мало.

Увеличение деформации под нагрузкой или часть такого увеличения обусловлено ползучестью бетона, однако разделение упругой и пластической части деформации затруднительно из-за зависимости мгновенной деформации от скорости загружения. Для практических целей

разделение деформаций производят следующим образом: деформация за время нагружения считается упругой, дальнейшее увеличение деформации протекает за счет ползучести бетона. Модуль упругости, удовлетворяющий этому условию, показан на рис. 6.1 как модуль деформации. Стандартных методов определения модуля деформации в настоящее время нет; в некоторых лабораториях он определяется при уровнях напряжений в интервалах от 28 до 140 /сгс/сж, в других- при напряжениях, достигающих 15, 25, 33 или 50% разрушающей нагрузки. Поскольку модуль деформации уменьшается с увеличением напряжения, то напряжение, при котором он определяется, всегда должно быть установлено. Этот модуль является статическим модулем упругости, так как определяется он из отношения напряжения к деформации, которое в противоположность динамическому модулю устанавливается на уровне 280 кгс/см. Определение начального модуля упругости связано со значительными трудностями, однако его приблизительная величина может быть определена косвенным путем: секущая к кривой напряжение-деформация на ветви разгрузки часто, хотя и не во всех случаях, параллельна касательной, проходящей через начало координат (рис. 6.1). Повторная нагрузка и разгрузка уменьшает ползучесть, поэтому диаграмма напряжение-деформация, полученная после трех или четырех нагружении, характеризуется весьма малой кривизной. Этот метод определения модуля упругости включен в стандарт BS 1881 : 1952.

Влияние ползучести на величину общей деформации значительно уменьшается при измерениях деформаций в малом диапазоне изменения напряжений, однако в этом случае точный замер деформации представляет большие трудности.

На рис. 6.2 представлен график деформаций бетона различной прочности в зависимости от отношения действующих напряжений к прочности бетона. Под нагрузкой, составляющей половину конечной прочности, более высокой величиной деформации характеризуется бетон большей прочности. При этом для любых двух бетонов отношение их деформаций значительно меньше, чем отношение их прочностей, т. е.

йеформация

Рис. 6.1. Типичная диаграмма напряжение - деформация бетона



Таблица 6.1. Величины усадки растворных и бетонных образцов площадью поперечного сечения 36 см при хранении при 20° С и относительной влажности 50%

Отношение заполни-

Усадка (lO~) через 6 мес. при В/Ц, равном

тель :це-мент

0,4 1

0,5 1

1200

1050

110

7300

1000 1500 2000 реформация Ю

2500

Рис. 6.2. Зависимость между деформацией и отношением напряжения к прочности для бетонов различной прочности

бетон большей прочности характеризуется большей величиной модуля упругости (табл. 6.1).

На рис. 6.2 показаны максимальные значения деформаций при разрушении бетона. Эти деформации тем больше, чем ниже прочность бетона.

Модуль упругости бетона увеличивается пропорционально корню квадратному из его прочности. Эта зависимость справедлива только для основной части графика и зависит от условий испытания образцов: водонасы-шенные образцы характери-

иО 60 80

Возраст В ct/тках

Рис. 6.3. Влияние влажностных условий испытаний на величину модуля деформаций (при 56 кгс1см) бетонов различного возраста

зуются более высоким модулем упругости, чем сухие (рис. 6.3), в то время как прочности их находятся на одном уровне. Свойства заполнителя также влияют на модуль упругости бетона; с увеличением модуля упругости крупного заполнителя увеличивается модуль упругости бетона. Форма поверхности крупного заполнителя и характеристика его поверхности могут также влиять на величину модуля упругости бетона и на вид графической зависимости напряжение - деформация (рис. 6.4).

Ниже приведен модуль упругости бетона различной прочности, определенный в соответствии с руководством CP 2007-1960 по проектированию предварительно напряженного бетона.



Среднее значение прочности бетонных кубов при сжатии в кгс/см

Модуль упругостиX X10* в кгс1см

Соотношение между модулем упругости и прочностью бетона зависит также от количественного соотношения компонентов в смеси (модуль упругости заполнителей обычно выше, чем модуль упругости цементного камня) и от возраста образцов: с увеличением возраста бетона модуль упругости его растет быстрее, чем прочность.


200 т 600 800 1000 1200 Деформация 10

Рис. 6.4. Соотношение напряжения - деформации для бетонов на различных крупных заполнителях

<9

35 fZ8

/ /

-----

1U0 и

Прочность при CHfomuu в нес/см

Рис. 6.5. Статический модуль упругости бетонов на гравии и керамзите при испытаниях в различном возрасте до 1 года

/, 2, 3, 4 - гравийные смеси; 5 -керамзит

Эту зависимость можно четко проследить на рис. 6.5, где также приводятся результаты испытаний бетона на керамзите. Модуль упругости бетона на легком заполнителе обычно составляет от 40 до 807а модуля упругости тяжелого бетона той же прочности, при этом модуль упругости легкого бетона не зависит от модуля упругости цементного камня и соотношения компонентов в составе бетона.



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 [ 65 ] 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113