www.chms.ru - вывоз мусора в Люберцах


Почему витражи поражают или древнее искусство в интерьере


Панно в интерьере - модно, роскошно и практично


Наливные полы с 3D-эффектом - современное чудо дизайна


Что такое морской стиль и как его применить для оформления дома?


Почему эклектика в интерьере так популярна?

Перейти на главную  Журналы 

0 1 2 3 4 5 6 7 [ 8 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

Вода решетки - это часть кристаллизационной воды, которая химически не связана с основными компонентами решетки.

Свободная вода удерживается в капиллярах и находится вне поля действия поверхностных сил твердой фазы.

В настоящее время нет методики испытаний, которая позволила бы определить количество воды в указанных различных ее состояниях. Также нелегко предсказать эти величины исходя из теоретических представлений, поскольку величина энергии связи воды в гидрате такого же порядка, как и величина энергии связи адсорбированной воды К

По существующей классификации полезная для исследовательских целей вода в цементном камне подразделяется на воду неиспаряющуюся и испаряющуюся.

Это разделение достигается при высушивании цементного камня до установившегося равновесия (т. е. до постоянного веса) при определенном давлении пара. Обычно высушивание выполняется при величине давления пара 8-10- ммрт.ст., получаемого над Mg(C104)2 2Н2О. Недавно было применено высушивание цементного камня под вакуумом, соединенным с влагоуловителем, охлажденным до температуры-79°С. Количество испаряющейся воды может быть определено также путем высушивания при повышенной температуре, обычно 105° С, в результате или вымораживания, или удаления с растворителем.

Все эти методы в сущности основаны на разделении воды в соответ-стви с возможностью ее удаления из цементного камня при определенном пониженном давлении водяного пара. Такое деление неизбежно является в какой-то части произвольным, поскольку зависимость между давлением водяного пара и содержанием воды в цементном камне имеет непрерывный характер. В противоположность кристаллогидратам в этой зависимости нет характерных точек, соответствующих определенным сте-хиометрическим количествам воды.

В целом, неиспарающаяся вода включает почти всю химически связанную воду, а также некоторое количество воды, не удерживаемой химическими связями. Эта вода характеризуется более низким давлением пара, чем вода в окружающей атмосфере; количество такой воды в действительности есть непрерывная функция давления окружающего пара.

Количество неиспаряющейся воды увеличивается по мере развития гидратации, но в насыщенном водой цементном камне количество неиспаряющейся воды никогда не может превысить половину общего количества имеющейся воды. В достаточно полно гидратированном цементе количество неиспаряющейся воды составляет около 187о веса безводного материала; такое соотношение возрастает примерно до 23% в полностью гидратированном цементе. Это вытекает из пропорциональной зависимости между количеством неиспаряющейся воды и объемом твердой части цементного камня, при этом последний объем может быть использован для определения количества присутствующего цементного геля, т. е. степени гидратации.

В работах М. Ф. Казанского и В. М. Казанского [29] описана методика определения форм связи воды с поверхностью твердой фазы по кривым десорбции влаги при сушке. (Прим. ред.)



Способ удержания воды в цементном камне определяет энергию связи. Например, 400 калорий необходимо для связывания 1 г неиспаряющейся воды, в то время как энергия кристаллизационной воды Са(0Н)2 составляет 850 калорий на 1 г. Кроме того, плотность воды различна и составляет примерно 1,2 для неиспаряющейся воды, 1,1 для воды геля и 1 для свободной воды. Было показано, что увеличение плотности адсорбционной воды при ее низких поверхностных концентрациях не есть результат уплотнения, а вызывается ориентацией молекул в адсорбированной фазе вследствие действия поверхностных сил.

ТЕПЛОТА ГИДРАТАЦИИ ЦЕМЕНТА

Как и множество химических реакций, реакция гидратации клинкерных минералов имеет экзотермический характер, при этом цемент выделяет до 120 кал1г. Так как теплопроводность бетона сравнительно низка, то внутри массивных бетонных конструкций гидратация приводит к значительному подъему температуры. В то же время наружная часть бетонного массива теряет некоторое количество тепла, так что устанавливается резкий градиент температуры, что при последующем охлаждении внутренней части может привести к образованию трещин.

С другой стороны, тепловыделение при гидратации цемента может препятствовать замерзанию воды в капиллярах свежеуложенного бетона в холодную погоду, поэтому высокое тепловыделение в данном случае является положительным фактором. Ясно, что желательно знать величину тепловыделения различных цементов, чтобы выбрать наиболее подходящий вид цемента для каждого конкретного случая.

Тепловыделением называют количество тепла в калориях на грамм негидратированного цемента, выделяющееся при его полной гидратации при определенной температуре. Наиболее распространенный способ определения тепловыделения заключается в измерении теплоты растворения негидратированного и гидратированного цемента в смеси азотной и фтористоводородной кислот: разница между этими двумя величинами представляет тепловыделение гидратации. Этот метод описан в BS 1370:1947 и аналогичен методу стандарта ASTM С 186-55. Несмотря на то что особых трудностей эти испытания не представляют, необходимо предотвратить карбонизацию негидратированного цемента, так как поглощение 1% СО2 приводит к явному снижению тепловыделения на 5,8 кал]г от общего тепловыделения 60-100 кал/г.

Температура, при которой протекает гидратация, сильно влияет на скорость тепловыделения, что показывают данные табл. 1.4.

Строго говоря, суммарное тепловыделение складывается из тепловыделения химической реакции и тепловыделения в результате сорбции воды поверхностью геля, образуемого в процессе гидратации. Теплота сорбции составляет четвертую часть общего тепловыделения.

Для практических целей необходимо знать не общее тепловыделение, а скорость тепловыделения, которую можно легко измерить с помощью адиабатического калориметра. Типичные кривые изменения температуры со временем в адиабатических условиях приведены на рис. 1. 8.



Таблица lA. Тепловыделение при гидратации цемента в течение 72 ч при различных температурах

Тип цемента

Тепловыделение в кал1г при температуре

в °с

23.9

32,2

36,9

73,9

52,9

83,2

85,3

93,2

25,7

46,6

45,8

51,2


о Ю 20 20 40 50 SO 70 время с момента укладки в v

Рис. 1.8. Рост температуры бетонов состава 1:2:4 с В/Д=0,60, приготовленных на различных цементах и твердевших в адиабатических условиях. На графике приведена обшая теплота гидратации каждого цемента к 3-суточному возрасту


12 16 Время в г

Рис. 1.9. Влияние содержания СзА в цементе на тепловыделение (количество CsS примерно постоянно)


Время в г

Рис. 1.10. Влияние содержания CsS в цементе на тепловыделение (содержание СзА примерно постоянно)

Tan 15

3суток 28 суток 1год 6,5лет 7суток Змесяца Возраст (о логарифмииеском масилтабе)

Рис. 1.11. Скорость тепловыделения различных цементов (Л/Д = 0,40), твердевших при температуре 21,1° С



0 1 2 3 4 5 6 7 [ 8 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113